Key features:

- Compact and EN compliant RF1V force guided relays
- Force guided contact mechanism (EN50205 Type A TÜV approved)
- Contact configuration 4-pole (2NO-2NC, 3NO-1NC) 6-pole (4NO-2NC, 5NO-1NC, 3NO-3NC)
- Built-in LED indicator available.
- Fast response time (8 ms maximum).
- High shock resistance ($200 \mathrm{~m} / \mathrm{s}^{2}$ minimum)
- Finger-safe DIN rail mount socket and PC board mount socket.

Applicable Standard	Marking	Certification Organization/ File Number
UL508	UL/c-UL File No. E55996	
CSA C22.2 No.14		TÜV SÜD
EN50205		
EN61810-1		

Part Number Selection
Part Number

		Without LED Indicator	With LED Indicator	Rated Coil Voltage
		RF1V-2A2B-D12	RF1V-2A2BL-D12	12V DC
	2NO-2NC	RF1V-2A2B-D24	RF1V-2A2BL-D24	24 V DC
		RF1V-2A2B-D48	RF1V-2A2BL-D48	48 V DC
		RF1V-3A1B-D12	RF1V-3A1BL-D12	12 V DC
	3NO-1NC	RF1V-3A1B-D24	RF1V-3A1BL-D24	24 V DC
		RF1V-3A1B-D48	RF1V-3A1BL-D48	48 V DC
$\begin{array}{ll}\text { N } & \\ \text { U } & \\ \tilde{0} & \\ 0 & 6 \text {-pole }\end{array}$		RF1V-4A2B-D12	RF1V-4A2BL-D12	12 V DC
	4NO-2NC	RF1V-4A2B-D24	RF1V-4A2BL-D24	24 V DC
		RF1V-4A2B-D48	RF1V-4A2BL-D48	48 V DC
		RF1V-5A1B-D12	RF1V-5A1BL-D12	12 V DC
	5NO-1NC	RF1V-5A1B-D24	RF1V-5A1BL-D24	24 V DC
		RF1V-5A1B-D48	RF1V-5A1BL-D48	48 V DC
		RF1V-3A3B-D12	RF1V-3A3BL-D12	12 V DC
	3NO-3NC	RF1V-3A3B-D24	RF1V-3A3BL-D24	24 V DC
		RF1V-3A3B-D48	RF1V-3A3BL-D48	48 V DC

Sockets

	Style	No. of Poles	Ordering Type No.
		4	SF1V-4-07L
	DIN Rail Mount Sockets	6	SF1V-6-07L
	PC Board Mount Sockets	4	SF1V-4-61

Certification for Sockets

Applicable Standard	Marking	Certification Organization/ File Number
UL508	UL/c-UL File No. E62437	
CSA C22.2 No.14		TÜV SÜD
EN147000		EC Low Voltage Directive (DIN rail mount sockets only)

Coil Ratings

Contact		Rated Coil Voltage (V)	Rated Current$\begin{aligned} & (\mathrm{mA}) \pm 10 \% \\ & \left(\text { at } 20^{\circ} \mathrm{C}\right)^{1} \end{aligned}$	Coil Resistance (Ω) $\pm 10 \%$ (at $20^{\circ} \mathrm{C}$)	Operating Characteristics (at $20^{\circ} \mathrm{C}$)			Power Consumption	
		Pickup Voltage			Dropout Voltage	Maximum Continuous Applied Voltage ${ }^{2}$			
4-pole	2NO-2NC		12V DC	30	400	75\% maximum	10\% minimum	110\%	Approx. 0.36W
		24V DC	15	1600					
		48 V DC	7.5	6400					
	3NO-1NC	12V DC	30	400					
		24 V DC	15	1600					
		48 V DC	7.5	6400					
6-pole	4NO-2NC	12V DC	41.7	288	Approx. 0.5W				
		24V DC	20.8	1152					
		48 V DC	10.4	4608					
	5NO-1NC	12 V DC	41.7	288					
		24V DC	20.8	1152					
		48V DC	10.4	4608					
	3NO-3NC	12V DC	41.7	288					
		24 V DC	20.8	1152					
		48 V DC	10.4	4608					

1. For relays with LED indicator, the rated current increases by approx. 2 mA .
2. Maximum continuous applied voltage is the maximum voltage that can be applied to relay coils.

Accessories

Item	Appearance	Specifications	Type No.		Remarks
DIN Rail		Aluminum Weight: Approx. 250g	BNDN1000	Length: Width:	$\begin{aligned} & 1 \mathrm{~m} \\ & 35 \mathrm{~mm} \end{aligned}$
End Clip		Metal (zinc plated steel) Weight: Approx. 15g	BNL5	-	
			BNL6		

Socket Specifications

| Part Number | SF1V-4-07L | SF1V-6-07L | SF1V-4-61 |
| :--- | :--- | :--- | :--- |$|$ SF1V-6-61

1. When using at 70 to $85^{\circ} \mathrm{C}$, reduce the switching current by $0.1 \mathrm{~A} /{ }^{\circ} \mathrm{C}$.

Characteristics

Maximum Switching Capacity

Electrical Life Curve

Applicable Crimping Terminals Specifications

Note: Ring tongue terminals cannot be used.

Notes on Contact Gaps except Welded Contacts

Example: RF1V-2A2B-D24

RF1V (4-pole)

RF1V Dimensions (mm)

RF1V (6-pole)

PC Board Terminal type Mounting Hole

 Layout (Bottom View)
RF1V (4-pole)

RF1V (6-pole)

Internal Connection (View from Bottom) With Indicator and Diode (-LD type)

RF1V (4-pole)

Without LED Indicator

With LED Indicator

RF1V (6-pole)

Without LED Indicator

With LED Indicator

SF1V DIN Rail Mount Socket Dimensions (mm)

SF1V PC Board Mount Sockets

SF1V-4-07L (4-pole)

SF1V-6-07L (6-pole)

Driving Circuit for Relays

1. To ensure correct relay operation, apply rated voltage to the relay coil.
2. Input voltage for the DC coil:

A complete DC voltage is best for the coil power to make sure of stable relay operation. When using a power supply containing a ripple voltage, suppress the ripple factor within 5%. When power is supplied through a rectification circuit, the relay operating characteristics, such as pickup voltage and dropout voltage, depend on the ripple factor. Connect a smoothing capacitor for better operating characteristics as shown below.
3. Leakage current while relay is off:

When driving an element at the same time as the relay operation, special consideration is needed for the circuit design. As shown in the incorrect circuit below, leakage current (lo) flows through the relay coil while the relay is off. Leakage current causes coil release failure or adversely affects the vibration resistance and shock resistance. Design a circuit as shown in the correct example.

Incorrect

4. Surge suppression for transistor driving circuits:

When the relay coil is turned off, a high-voltage pulse is generated, causing a transistor to deteriorate and sometimes to break. Be sure to connect a diode to suppress the back electromotive force. Then, the coil release time becomes slightly longer. To shorten the coil release time, connect a Zener diode between the collector and emitter of the transistor. Select a Zener diode with a Zener voltage slightly higher than the power voltage.

Operating Instructions

Protection for Relay Contacts

1. The contact ratings show maximum values. Make sure that these values are not exceeded. When an inrush current flows through the load, the contact may become welded. If this is the case, connect a contact protection circuit, such as a current limiting resistor.
2. Contact protection circuit:

When switching an inductive load, arcing causes carbides to form on the contacts, resulting in increased contact resistance. In consideration of contact reliability, contact life, and noise suppression, use of a surge absorbing circuit is recommended. Note that the release time of the load becomes slightly longer. Check the operation using the actual load. Incorrect use of a contact protection circuit will adversely affect switching characteristics. Four typical examples of contact protection circuits are shown in the following table:

3. Do not use a contact protection circuit as shown below:
This protection circuit is very effective in arc suppression when
opening the contacts. But, the capacitor is charged while the
contacts are opened. When the contacts are closed, the capacitor
is discharged through the contacts, increasing the possibility of
contact welding.

Generally, switching a DC inductive load is more difficult than switching a DC resistive load. Using an appropriate arc suppressor, however, will improve the switching characteristics of a DC inductive load.

Soldering

1. When soldering the relay terminals, use a soldering iron of 30 to 60 W , and quickly complete soldering (within approximately 3 seconds).
2. Use a non-corrosive rosin flux.

Operating Instructions con't

Other Precautions

1. General notice:

To maintain the initial characteristics, do not drop or shock the relay.
The relay cover cannot be removed from the base during normal operation. To maintain the initial characteristics, do not remove the relay cover

Use the relay in environments free from condensation, dust, sulfur dioxide $\left(\mathrm{SO}_{2}\right)$, and hydrogen sulfide ($\left.\mathrm{H}_{2} \mathrm{~S}\right)$.

Make sure that the coil voltage does not exceed applicable coil voltage range.
2. UL and CSA ratings may differ from product rated values determined by IDEC.
3. Do not use relays in the vicinity of strong magnetic field, as this may affect relay operation.

- Turn off the power to the relay before starting installation, removal, wiring, maintenance, and inspection of the relays. Failure to turn power off may cause electrical shock or fire hazard.
- Observe specifications and rated values, otherwise electrical shock or fire hazard may be caused.
- Use wires of the proper size to meet voltage and current requirements. Tighten the terminal screws on the relay socket to the proper tightening torque.
- Surge absorbing elements on AC relays with RC or DC relays with diode are provided to absorb the back electromotive force generated by the coil. When the relay is subject to an excessive external surge voltage, the surge absorbing element may be damaged. Add another surge absorbing provision to the relay to prevent damage.

Precautions for the RU Relays

- Before operating the latching lever of the RU relay, turn off the power to the RU relay. After checking the circuit, return the latching lever to the original position.
- Do not use the latching lever as a switch. The durability of the latching lever is a minimum of 100 operations.
- When using DC loads on 4PDT relays, apply a positive voltage to terminals of neighboring poles and a negative voltage to the other terminals of neighboring poles to prevent the possibility of short circuits.
- DC relays with a diode have a polarity in the coil terminals. Apply the DC voltage to the correct terminals.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

IDEC:

