
SCES561D-MARCH 2004-REVISED APRIL 2008

CONFIGURABLE MULTIPLE-FUNCTION GATE

FEATURES

- Qualified for Automotive Applications
- Supports 5-V V_{CC} Operation
- Inputs Accept Voltages to 5.5 V
- Max t_{pd} of 7.3 ns at 3.3 V
- Low Power Consumption, 10-μA Max I_{CC}
- ±24-mA Output Drive at 3.3 V
- I_{off} Supports Partial-Power-Down Mode Operation

- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)
- Choose From Nine Specific Logic Functions

See mechanical drawings for dimensions.

DESCRIPTION/ORDERING INFORMATION

This configurable multiple-function gate is designed for 1.65-V to 5.5-V V_{CC} operation.

The SN74LVC1G97 features configurable multiple functions. The output state is determined by eight patterns of 3-bit input. The user can choose the logic functions MUX, AND, OR, NAND, NOR, inverter, and noninverter. All inputs can be connected to V_{CC} or GND.

This device functions as an independent gate but, because of Schmitt action, it may have different input threshold levels for positive-going (V_{T+}) and negative-going (V_{T-}) signals.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

ORDERING INFORMATION⁽¹⁾

T _A	PACKAG	E ⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING ⁽³⁾
–40°C to 125°C	SOT (SOT-23) – DBV	Reel of 3000	SN74LVC1G97QDBVRQ1	C97_
-40 C 10 125 C	SOT (SC-70) – DCK	Reel of 3000	SN74LVC1G97QDCKRQ1	CS_

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

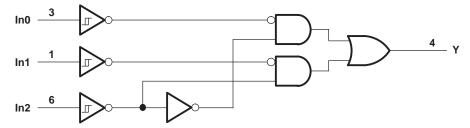
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

(3) DBV/DCK: The actual top-side marking has one additional character that designates the wafer fab/assembly site.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SN74LVC1G97-Q1

SCES561D-MARCH 2004-REVISED APRIL 2008



www.ti.com

FUNCTION TABLE

	INPUTS	OUTPUT				
ln2	ln1	In0	Y			
L	L	L	L			
L	L	Н	L			
L	Н	L	н			
L	Н	Н	н			
н	L	L	L			
н	L	Н	н			
н	Н	L	L			
н	Н	Н	н			

LOGIC DIAGRAM (POSITIVE LOGIC)

FUNCTION TABLE

LOGIC FUNCTION	FIGURE NO.
2-to-1 data selector	1
2-input AND gate	2
2-input OR gate with one inverted input	3
2-input NAND gate with one inverted input	3
2-input AND gate with one inverted input	4
2-input NOR gate with one inverted input	4
2-input OR gate	5
Inverter	6
Noninverted buffer	7

2

SCES561D-MARCH 2004-REVISED APRIL 2008

LOGIC CONFIGURATIONS

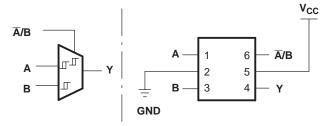


Figure 1. 2-to-1 Data Selector

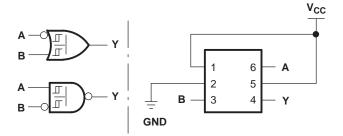


Figure 3. 2-Input OR Gate With One Inverted Input 2-Input NAND Gate With One Inverted Input

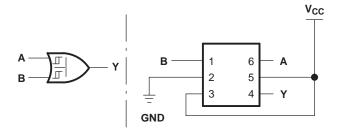


Figure 5. 2-Input OR Gate

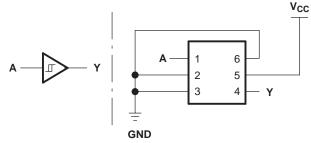


Figure 7. Noninverted Buffer

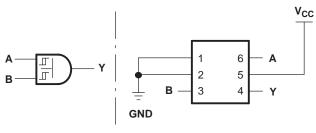


Figure 2. 2-Input AND Gate

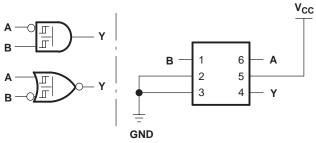


Figure 4. 2-Input AND Gate With One Inverted Input 2-Input NOR Gate With One Inverted Input

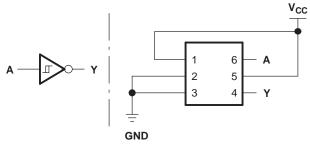


Figure 6. Inverter

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range		-0.5	6.5	V
VI	Input voltage range ⁽²⁾		-0.5	6.5	V
Vo	Voltage range applied to any output in the high-implication	bedance or power-off state ⁽²⁾	-0.5	6.5	V
Vo	Voltage range applied to any output in the high or	low state ⁽²⁾⁽³⁾	-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
I _O	Continuous output current			±50	mA
	Continuous current through V _{CC} or GND			±100	mA
0	Package thermal impedance ⁽⁴⁾	DBV package		165	°C/W
θ_{JA}		DCK package		-50 ±50 ±100	-0/00
T _{stg}	Storage temperature range		-65	150	°C

Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings (1) only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed. The value of V_{CC} is provided in the recommended operating conditions table. (2)

(3)

(4) The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions⁽¹⁾

			MIN	MAX	UNIT
V	Supply voltage	Operating		5.5	V
V _{CC}	Supply voltage	Data retention only	1.5		v
VI	Input voltage		0	5.5	V
Vo	Output voltage		0	V_{CC}	V
		V _{CC} = 1.65 V		-4	
		V _{CC} = 2.3 V		-8	mA
I _{OH}	DH High-level output current	V _{CC} = 3 V		-16	
		$v_{\rm CC} = 5 v$		-24	
		$V_{CC} = 4.5 V$		-24	
		V _{CC} = 1.65 V		4	
		V _{CC} = 2.3 V		8	
I _{OL}	Low-level output current	<u> </u>		16	mA
		V _{CC} = 3 V		24	
		$V_{CC} = 4.5 V$		24	
T _A	Operating free-air temperature		-40	125	°C

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

4

Copyright © 2004–2008, Texas Instruments Incorporated

SCES561D-MARCH 2004-REVISED APRIL 2008

www.ti.com

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST C	ONDITIONS	V _{cc}	MIN	TYP ⁽¹⁾ N	IAX	UNIT	
			1.65 V	0.6		1.4		
V _{T+}			2.3 V	1		1.8		
Positive-going input threshold			3 V	1.3		2.2	V	
voltage			4.5 V	1.9		3.1		
			5.5 V	2.2		3.6		
			1.65 V	0.3		0.7		
V _{T-}			2.3 V	0.5		1		
Negative-going input threshold			3 V	0.7		1.4	V	
voltage			4.5 V	1		2		
			5.5 V	1.2		2.3		
			1.65 V	0.3		0.8		
ΔV_T			2.3 V	0.4		0.9		
Hysteresis			3 V	0.5		1	V	
$(V_{T+} - V_{T-})$			4.5 V	0.6		1.5		
			5.5 V	0.7		1.7		
	I _{OH} = −100 μA		1.65 V to 5.5 V	V _{CC} - 0.2				
	I _{OH} = -4 mA		1.65 V	1.2				
	I _{OH} = -8 mA		2.3 V	1.9				
V _{OH}	I _{OH} = -16 mA		3 V	2.4			V	
			3 V	2.3				
	$I_{OH} = -24 \text{ mA}$		4.5 V	3.8				
	I _{OL} = 100 μA		1.65 V to 5.5 V			0.1		
	$I_{OL} = 4 \text{ mA}$		1.65 V		(0.45		
	I _{OL} = 8 mA		2.3 V			0.3		
V _{OL}	I _{OL} = 16 mA		3 V		(0.45	V	
	0.4		3 V		(0.55		
	I _{OL} = 24 mA		4.5 V		(0.58		
I _I	$V_{I} = 5.5 V \text{ or GND}$		0 to 5.5 V			±5	μA	
l _{off}	$V_{I} \text{ or } V_{O} = 5.5 \text{ V}$		0			±10	μA	
I _{CC}	$V_{I} = 5.5 V \text{ or GND},$	I _O = 0	1.65 V to 5.5 V			10	μA	
ΔI _{CC}	One input at V _{CC} – 0.6 V,	Other inputs at V_{CC} or GND	3 V to 5.5 V			500	μA	
C _i	$V_{I} = V_{CC}$ or GND		3.3 V		3.5		pF	

(1) All typical values are at V_{CC} = 3.3 V, T_A = 25C.

Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 8)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 5 V ± 0.5 V		UNIT
	(INPUT)		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	Any In	Y	3.2	16.4	2	9.3	1.5	7.3	1.1	6.1	ns

5

SCES561D-MARCH 2004-REVISED APRIL 2008

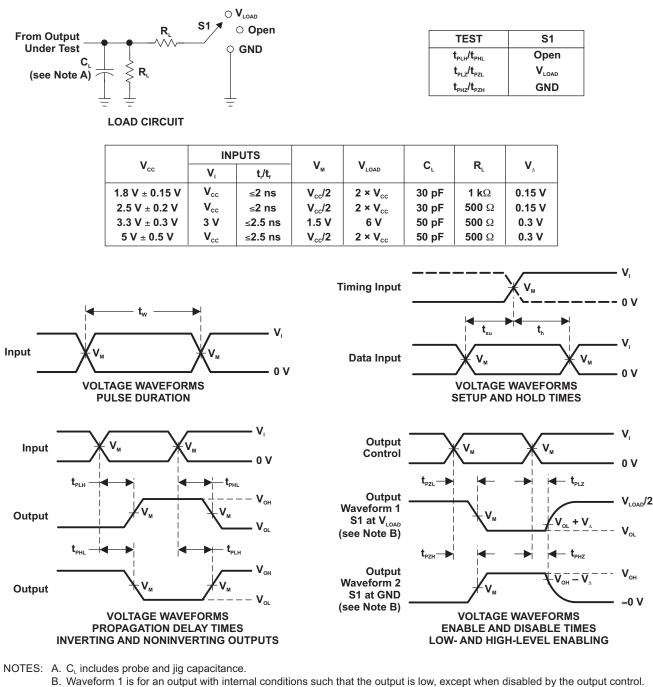
www.ti.com

Operating Characteristics

 $T_A = 25^{\circ}C$

PARAMETER		TEST	V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	$V_{CC} = 5 V$	UNIT	
	FARAMETER	CONDITIONS	TYP	TYP	TYP	TYP	UNIT	
C_{pd}	Power dissipation capacitance	f = 10 MHz	22	23	23	26	pF	

6


Copyright © 2004–2008, Texas Instruments Incorporated

SN74LVC1G97-Q1

SCES561D-MARCH 2004-REVISED APRIL 2008

www.ti.com

B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_o = 50 Ω.

- D. The outputs are measured one at a time, with one transition per measurement.
- E. $t_{\mbox{\tiny PLZ}}$ and $t_{\mbox{\tiny PHZ}}$ are the same as $t_{\mbox{\tiny dis}}$
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 8. Load Circuit and Voltage Waveforms

Product Folder Link(s): SN74LVC1G97-Q1

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
SN74LVC1G97QDBVRQ1	ACTIVE	SOT-23	DBV	6	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	C97O	Samples
SN74LVC1G97QDCKRQ1	ACTIVE	SC70	DCK	6	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	CSO	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM

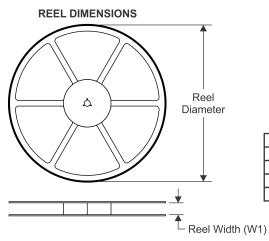
10-Dec-2020

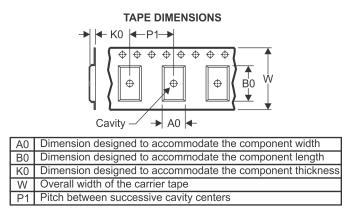
OTHER QUALIFIED VERSIONS OF SN74LVC1G97-Q1 :

• Catalog: SN74LVC1G97

Enhanced Product: SN74LVC1G97-EP

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Enhanced Product Supports Defense, Aerospace and Medical Applications

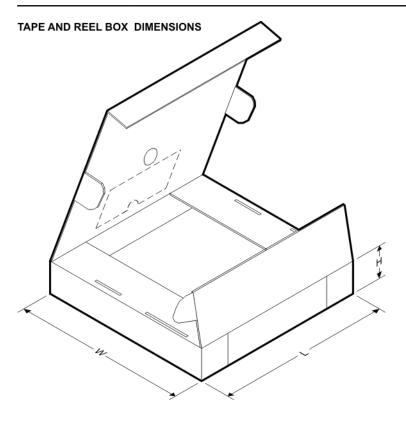

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVC1G97QDBVRQ1	SOT-23	DBV	6	3000	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
SN74LVC1G97QDCKRQ1	SC70	DCK	6	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3

TEXAS INSTRUMENTS

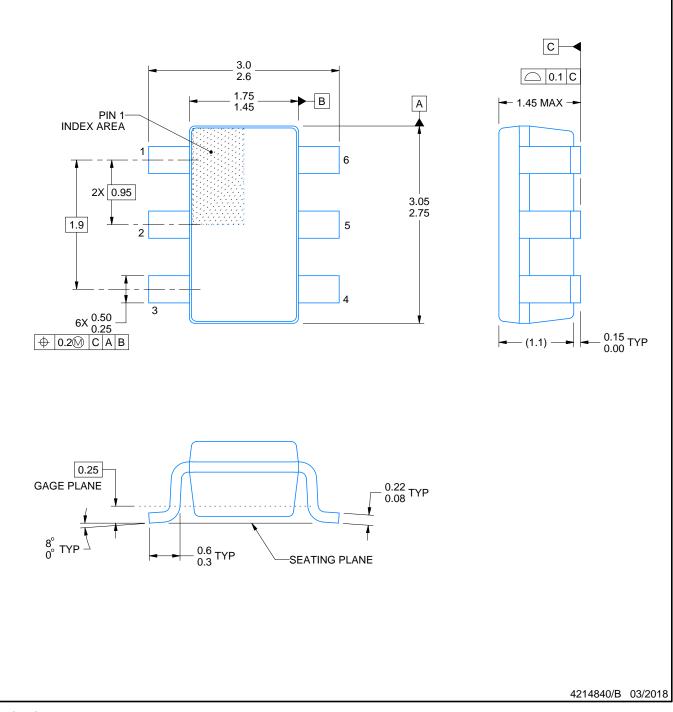
www.ti.com

PACKAGE MATERIALS INFORMATION

5-Jan-2021

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVC1G97QDBVRQ1	SOT-23	DBV	6	3000	200.0	183.0	25.0
SN74LVC1G97QDCKRQ1	SC70	DCK	6	3000	200.0	183.0	25.0


DBV0006A

PACKAGE OUTLINE

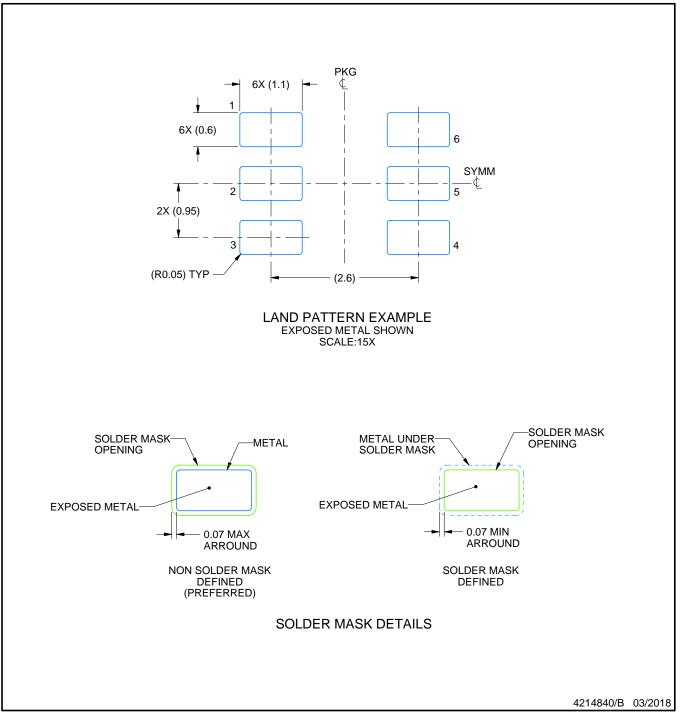
SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.2. This drawing is subject to change without notice.3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.

- 4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation. 5. Refernce JEDEC MO-178.



DBV0006A

EXAMPLE BOARD LAYOUT

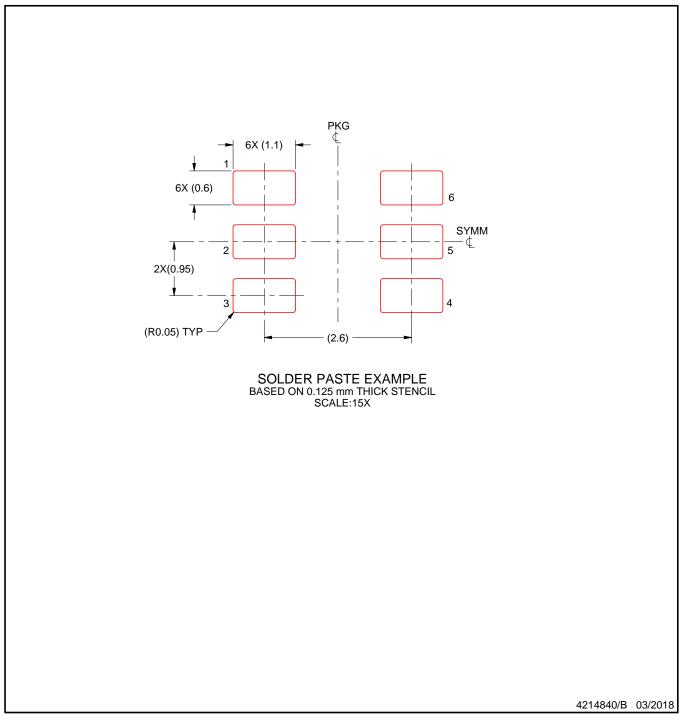
SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



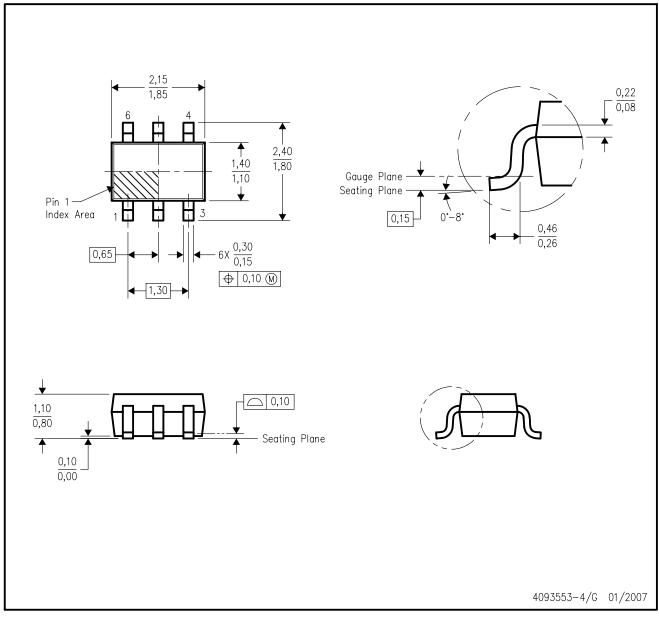
DBV0006A

EXAMPLE STENCIL DESIGN

SOT-23 - 1.45 mm max height

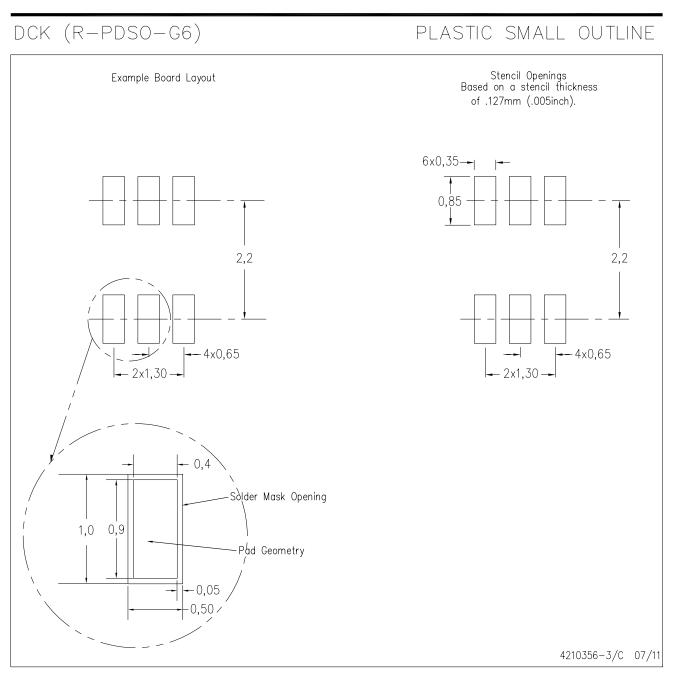
SMALL OUTLINE TRANSISTOR

NOTES: (continued)


8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

DCK (R-PDSO-G6)


PLASTIC SMALL-OUTLINE PACKAGE

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Falls within JEDEC MO-203 variation AB.

LAND PATTERN DATA

NOTES:

- A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated